1. Powers of 2

1024	512	256	128	64	32	16	8	4	2	1
2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

2. The number of host-bits + (sub)network bits is 32 \#N + \#H = 32

Example 1: /17-> what is the number of Host bits?
Solution 1: \#H = 32-17 = 15

Here \#H = the number of host bits
Here \#N = the number of (sub)network bits

3. How do I calculate the number of (sub)networks?

\#N = 2^{n}
Here n is the number of (sub)network bits
Example 1: How many subnets can you create if you extend your subnet mask from /16 \rightarrow /19?
Solution 1: Subnetting from /16-> /19 \rightarrow n bits are $19-16=3$
So \#N $=2^{3}=8$ subnets
Example 2: How many subnets bits do I need to support 160 subnets?
Solution 2: \# $N=2^{N} \rightarrow$ this should be $>=160 \rightarrow 2^{8}=256$, so $\mathrm{n}=8$. The number of subnets bits required is 8 .

4. How do I calculate the number of hosts per (sub)network? $\# \mathrm{H}=\left(2^{\mathrm{h}}-2\right)$

Here h is the number of host bits
Example 1: How many hosts can you support with 7 host-bits?
Solution 1: $\mathrm{h}=7 \rightarrow \# \mathrm{H}=\left(2^{7}-2\right)=128-2=126$.
Example 2: How many host-bits do I need to support 160 hosts?
Solution 2: \#H $=\left(2^{\mathrm{h}}-2\right) \rightarrow$ this should be $>=160 \rightarrow\left(2^{8}-2\right)=254$, so $\mathrm{h}=8$. The number of host-bits required is 8 . (so the number of (sub)network bits are $32-8=/ 24$, see paragraph 8)

5. How do I convert Netmasks from / (=cidr or vlsm) notation to dotted decimal?

Divide in groups of 8 bits and the remainder can be found in the following table:

/1/9	$/ 17 / 25 \rightarrow$. 128	/5/13/21/29	\rightarrow	. 248
/2/10	/18 /26 \rightarrow	. 192	/6...	\rightarrow	. 252
/3..	\rightarrow	. 224	/7...	\rightarrow	. 254
/4...	\rightarrow	. 240	/8/16/24/32	\rightarrow	. 25

Example 1: Convert / 28 to dotted decimal notation.
Solution 1: $/ 28=/ 8+/ 8+/ 8+/ 4=255.255 .255 .240$
Example 2: Convert / 30 to dotted decimal notation.
Solution 2: $/ 30=/ 8+/ 8+/ 8+/ 6=255.255 .255 .252$

Example 3: Convert / 15 to dotted decimal notation.
Solution 2: $/ 15=/ 8+/ 7+/ 0+/ 0=255.254 .0 .0$

6. Using the "Magic" number

The magic number allows you to easily calculate the sizes of various subnets.
Example 1: What are the possible subnets if you subnet 192.168.0.0/24 to /26?
Write " 256 " above the netmask value in the octet that is being subnetted and subtract the value. The result is the "Magic" number - or subnet size:

```
-> 256 }\quad->\mathrm{ this number is fixed
```

255.255.255.192

64
So 64 is the Magic number. You can now easily deduct the corresponding subnets:
$1^{\text {st }}$ subnet: $\quad 192.168 .0 .0 \quad \rightarrow$ add 64 to step to the $2^{\text {nd }}$ subnet:
$2^{\text {nd }}$ subnet: \quad 192.168.0.64 $\quad \rightarrow$ add 64 to step to the $3^{\text {nd }}$ subnet:
$3^{\text {rd }}$ subnet: \quad 192.168.0.128 $\quad \rightarrow$ add 64 to step to the 4th subnet:
$4^{\text {th }}$ subnet: $\quad 192.168 .0 .192$
\rightarrow can you perform this as well for 172.16.1.0/19?..

7. Calculation the subnet mask left-to-right

If you are calculating the netmask and the number of subnet-bits is known, then calculate left-to-right.

Example 1: You want to create 8 subnets within 192.168.1.0/26
Solution 1: As $2^{3}=8$, this will require 3 subnet-bits.

Then to the /26 (the left 26 subnet bits), you add 3 subnet bits. $/ 26+3=/ 29$. Your new subnet mask will be 255.255.255.248.

8. Calculating the subnet mask right-to-left

This is done when you are calculating your subnet by looking at the number of hosts-persubnet.

Example 1: You want to create subnets within 192.168.16.0/23 that support 28 hosts. Solution 1: As $\left(2^{5}-2\right)>=28$, your number of host-bits is 5 . The number of host bits will now be deducted from all 32 netmask bits (working right-to-left) : /32-5 = /27. Your new subnets mask will be 255.255.255.224.

9. Calculating a wildcard mask

For the Cisco fans: the wildcard mask (used in ACL's, OSPF etc.) are calculated by deducting a netmask from the entire / 32 bits.

Example 1: what is the wildcard mask for $/ 27=255.255 .255 .224$?
Solution 1: \quad 255.255.255.255
255.255.255.224
0. 0. 0. 31 will be the corresponding wildcard mask.

